Mixed-mode oscillations in pyramidal neurons under antiepileptic drug conditions
نویسندگان
چکیده
Subthreshold oscillations in combination with large-amplitude oscillations generate mixed-mode oscillations (MMOs), which mediate various spatial and temporal cognition and memory processes and behavioral motor tasks. Although many studies have shown that canard theory is a reliable method to investigate the properties underlying the MMOs phenomena, the relationship between the results obtained by applying canard theory and conductance-based models of neurons and their electrophysiological mechanisms are still not well understood. The goal of this study was to apply canard theory to the conductance-based model of pyramidal neurons in layer V of the Entorhinal Cortex to investigate the properties of MMOs under antiepileptic drug conditions (i.e., when persistent sodium current is inhibited). We investigated not only the mathematical properties of MMOs in these neurons, but also the electrophysiological mechanisms that shape spike clustering. Our results show that pyramidal neurons can display two types of MMOs and the magnitude of the slow potassium current determines whether MMOs of type I or type II would emerge. Our results also indicate that slow potassium currents with large time constant have significant impact on generating the MMOs, as opposed to fast inward currents. Our results provide complete characterization of the subthreshold activities in MMOs in pyramidal neurons and provide explanation to experimental studies that showed MMOs of type I or type II in pyramidal neurons under antiepileptic drug conditions.
منابع مشابه
Axonal gap junctions between principal neurons: a novel source of network oscillations, and perhaps epileptogenesis.
We hypothesized in 1998 that gap junctions might be located between the axons of principal hippocampal neurons, based on the shape of spikelets (fast prepotentials), occurring during gap junction-mediated very fast (to approximately 200 Hz) network oscillations in vitro. More recent electrophysiological, pharmacological and dye-coupling data indicate that axonal gap junctions exist; so far, the...
متن کاملEffects of Memantine on the Spontaneous Firing Frequency of Hippocampal CA1 Pyramidal Neurons in Intact and Alzheimer Rat Model: An Electrophysiological Study
Introduction: Memantine (MEM) is a noncompetitive N-methyl-D-aspartate receptor (NMDAR) antagonist clinically used for the treatment of Alzheimer disease (AD) in mild to severe conditions. The present study was conducted to investigate the effects of memantine on the spontaneous firing frequency of CA1 pyramidal neurons in rats caused by an electrical lesion of Nucleus Basalis Magnocellularis (...
متن کاملMixed-mode oscillations and chaos in a prey-predator system with dormancy of predators.
It is shown that the dormancy of predators induces mixed-mode oscillations and chaos in the population dynamics of a prey-predator system under certain conditions. The mixed-mode oscillations and chaos are shown to bifurcate from a coexisting equilibrium by means of the theory of fast-slow systems. These results may help to find experimental conditions under which one can demonstrate chaotic po...
متن کاملAntibiotic Supplements Affect Electrophysiological Properties and Excitability of Rat Hippocampal Pyramidal Neurons in Primary Culture
Introduction: Antibiotic supplements are regularly used in neuronal culture media to control contamination however, they can interfere with the neuronal excitability and affect electrophysiological properties. Therefore, in this study, the effect of penicillin/streptomycin supplements on the spontaneous electrophysiological activity of hippocampal pyramidal neurons was examined. Methods: Electr...
متن کاملInhibition of transient and persistent Na+ current fractions by the new anticonvulsant topiramate.
The actions of the antiepileptic drug topiramate (TPM) on Na+ currents were assessed using whole-cell patch-clamp recordings in dissociated neocortical neurons and intracellular recordings in neocortical slices. Relatively low TPM concentrations (25-30 microM) slightly inhibited the persistent fraction of Na+ current in dissociated neurons and reduced the Na+-dependent long-lasting action poten...
متن کامل